Review of the Hall B Gas System Hardware

George Jacobs

DSG Staff

Hall B Gas Utilities for detectors

- Drift Chamber (DC)
- Low Threshold Cherenkov Counter (LTCC)
- Micromegas Vertex Tracker (MVT)
- Forward Tagger (FT)
- Ring Imaging Cherenkov (RICH)
- High Threshold Cherenkov Counter (HTCC)
- Silicon Vertex Tracker (SVT)

DCGAS Sub-systems

- DCGAS Mixing and Storage
 - Mix 10% CO_2 in argon
- DCGAS Supply
 - Individual gas supply for regions 1, 2, and 3
- DCGAS PID Pressure Control
 - PID control loop for R3 and R1-2 exhaust manifolds
- DCGAS Pressure Protection Interlocks
 - Solenoid valves isolate chambers from gas system
- Passive Detector Over and Under Pressure Protection
 - Oil-filled bubblers vent gas to prevent detector damage when differential pressure exceeds 0.150 " water column

Hall B Gas Shed – 96B Liquid Argon, CO₂, and Nitrogen Dewar Locations

10% CO₂ in Argon Gas Mixing

- MKS mass flow controllers mix gas at correct ratio
- Storage tank pressure automatically maintained
 Pressure 80—100 psi by controlling mixed gas flow rate
- Two identical mixing systems maintain pressure in four storage tanks located at 96B gas shed

10% CO₂ in Argon Mixed Gas Storage (14,000 gal/53,000 liters)

DCGAS Supply

- MKS mass flow controllers meter gas flow
 - To each of the 3 regions
- O₂ concentration monitored
 - Sensor accurate to 1 ppm
- H₂O concentration monitored
 - Sensor accurate to 1 ppm
- MKS mass flow transducers monitor return gas flow

DCGAS Mixing and Supply Piping Diagram

DCGAS Supply and Mixing Panels

DCGAS Pressure Controls

- PID pressure control program runs on cRIO
 - MKS pressure transducer supplies pressure signal to cRIO
 - cRIO sends valve control signal to MKS valve driver module
 - MKS control value operates to remove gas at control signal value
- Solenoid valves isolate chambers
 - In case of power outage or system failure

DCGAS PID Loop Pressure Control

DCGAS Pressure Controls Diagram

Review Hall B Gas System

Solenoid Valve Panel

DCGAS Pressure Protection Interlocks

- Pressure monitored by differential pressure transducer
- In case of high or low pressure
 - Omega process controller opens the interlock relays
 - Open relays de-energize solenoid valves, isolating chambers from gas system
- Fail safe in case of complete or partial power failure

DCGAS Pressure Safety Interlock Diagram

DCGAS Operations Critical Path

• Procurement

- ASME relief valves for storage tanks
- Argon and CO₂
- Pressure control pumps
- Installation
 - ASME relief valves
 - Return pumps
 - DCGAS manifold on TORUS
- Connecting
 - DCGAS valve panel to TORUS manifolds
 - Connecting 18 chambers to manifolds
- Commissioning of mixing system

LTCC Gas System

- C₄F₁₀ gas supply
 - 500 Kg storage containers
- Detector PID pressure control
- Passive bubbler reliefs
- Detector pressure safety interlocks
 - Prevents detector pressure from exceeding limits
- C₄F₁₀ distillation and recovery
 - Batch distillation to recover liquid C_4F_{10}

Passive Pressure Protection Oil-Filled Bubblers

Over pressure

Oil trap

Review Hall B Gas System

Under pressure

LTCC Gas System Diagram

Ô

LTCC Gas System Flow and Pressure Controls

- MKS mass flow controllers
 - Meter gas flow to each sector
- Detector safety interlocks
 - Prevent gas venting and air contamination due to pressure controls fault
- Passive pressure safety bubblers
 - Prevent detector damage due to extreme over or under pressure
- PID pressure control
 - Maintains constant pressure in detector exhaust buffer tank

LTCC GAS System Controls

LTCC Gas Panel – Hall B Level 1 Forward Carriage

C_4F_{10} Recovery

- Due to high cost of C_4F_{10} , gas recovered and re-used
- Distillation unit condenses C₄F₁₀ for re-use
- Liquid N₂ cools the gas
- Recovery process complex

Requires trained operators

• Distillation unit's temperature control is automatic

C₄F₁₀ Recovery System

Ø

C_4F_{10} Distillation Unit in Hall B 96B Gas Shed

Critical Path for LTCC Gas System Operations

- Install pressure control tank
- Connect pressure control tank to valve panel and gas shed return line
- Zero and span scales for distillation unit and supply tank
- Purge system with N₂
- Procurement of C₄F₁₀ gas

 Long lead time for bulk purchase
- Attach C₄F₁₀ gas supply to system

Hall B MVT Gas Mixing System

- Mixing system location: Bldg. 96B gas shed
- System produces two different gas mixtures
 - Mixture 1 10% C_4H_{10} in argon
 - Mixture 2 10% C_4H_{10} 10% CF_4 in argon
- MKS mass flow controllers mix gases
- Mass flow controllers are controlled by cRIO controller
- Mixed gas pressures monitored by MKS absolute pressure transducer
- Mixed gas pressure automatically controlled by adjusting mass flow controllers' flows
- Mixed gas flows into Hall in temperature-controlled piping

MVT Mixing System Details

- Isobutane, C_4H_{10} , is a flammable gas with explosive limits of 1.4% to 8.3%
- Pressure system requirements apply
- cRIO-based controls
- EPICS monitoring and the alarm handler
- Trained operators required to replace the C₄H₁₀ and CF₄ gas supply cylinders (liquid)
- Uses two pre-existing 300 ft long temperature controlled ½" stainless steel tubing running between gas shed and Hall B Level 1 space frame

Hall B Gas System

Review Hall B Gas System

60

MVT Mix 1 Pressure Control

- Mix $1 10\% C_4 H_{10}$ in argon
- Pressure is monitored by an MKS absolute Baratron transducer
- Maintain line pressure 12-16 psi

MVT Mix 1 Pressure Control

- Normal detector flow is 750 sccm
 - Vary flow rate between 400-900 sccm
 - @ 16 psi flow is reduced to 400 sccm
 - @ 12 psi flow is increased to 900 sccm
 - @ 17.2 psi flow is turned off
- Purge flow of 1000 sccm
 - Vary flow rate between 500-1500 sccm
 - @ 16 psi flow is reduced to 500 sccm
 - @ 12 psi flow is increased to 1500 sccm
 - @ 17.2 psi flow is turned off

MVT Mix #1 - 10% C4H10 in Argon

3

MVT Mix 2 Pressure Control

- Mix 2: 10% CF_4 , 10% C_4H_{10} in argon
- Pressure is monitored by an MKS transducer
- Maintain line pressure at 12-16 psi

MVT Mix 2 Pressure Control

- Normal detector flow is 250 sccm
 - Vary flow rate between 200-300 sccm
 - @ 16 psi flow is reduced to 200 sccm
 - @ 12 psi flow is increased to 300 sccm
 - @ 17.2 psi flow is turned off
- Purge flow of 325 sccm
 - Vary flowrate between 200-400 sccm
 - @ 16 psi flow is reduced to 200 sccm
 - @ 12 psi flow is increased to 400 sccm
 - @ 17.2 psi flow is turned off

Review Hall B Gas System

96B Gas Shed

Critical Path for MVT Gas Mixing

- Purchase system components
- Fabricate and install
 - Gas shed valve panel
 - Controls chassis and cables
- Install utilities, scales, and pressure regulators for the C_4H_{10} and CF_4 cylinders
- Run stainless steel tubing in gas shed to connect supply cylinders to valve panel and to Hall B lines

Critical Path for MVT Gas Mixing

- Run stainless steel tubing in Hall B to connect temperature-controlled lines to MVT and Forward Tagger gas panels
- Approval of flammable gas use in 96B gas shed
- Develop and test cRIO controls
- Test MVT and FT gas distribution systems with gas mixing controls

RICH Gas Supply Utilities

- Dry N₂ gas purge for the Aerogel volume
 - Hall B service N_2 is >99.998 % pure with < 3 ppm H_2O concentration
 - N₂ is supplied via a 5500 liter (1500 gal) LN₂ dewar
- Dry air cooling supply for enclosed electronics
 - Clean dry air is supplied via high capacity Class 0 air compressors
 - Interlocks prevent equipment damage due to electronics operation without sufficient air cooling flow

Pressure Control Bubbler

RICH N2 Purge Circuit Valve Panel

Cooling Circuit Interlocks for RICH HV and LV Power to be Enabled Air Compressor Power ON Interlock - I1 and/or I2 or PS Power is Disabled Air Pressure Interlock - I3 > 100 psi (TBD) or Power Disabled Air Flow Interlock RICH #1 Power - I4 > 250 slm (TBD) or Power to RICH #1 Disabled Air Flow Interlock RICH #2 Power - I5 > 250 slm (TBD) or Power to RICH #2 Disabled

RICH Cooling Circuit Power Supply Interlocks

- Interlocks perform 2 main functions
 - Turn off all power to the electronics package
 - Prevent energizing the electronics package
- 3 cooling circuit interlocks
 - Air compressor operation: minimum one of two compressor
 - Minimum air pressure in tank >75 psi
 - Minimum cooling air flow >250 slm

Critical Path for RICH Operation

- Fabricate
 - N₂ purge and air cooling valve panels
 - Controls chassis
- Assemble equipment for clean room testing
- Install
 - Electrical utilities on forward carriage for the compressors
 - Compressors and components in Hall B
 - Lines from N_2 and air valve panels to detector
- Connect N₂ valve panel to Hall B service N₂ supply

HTCC CO₂ Gas Supply

- CO₂ supplied via 182 Kg liquid CO₂ dewars located at 96B gas shed
 - CO₂ is 99.99% pure
- HTCC shares the CO₂ supply with DC gas system
- CO₂ gas flow controlled by MKS mass flow controller
- Detector pressure limited by passive oil-filled pressure relief bubbler

HTCC Critical Path for Operations

- Run
 - Gas line from mass flow controller to HTCC
 - Cables from the controls chassis to system components
 - Mass flow controller
 - Pressure transducer
 - H₂O sensor
 - Network cable to mass flow controller

SVT N₂ Gas Purge Supply

- Dry N₂ gas supplied via Hall B N₂ service supply
- N_2 gas purity >99.998% with <3 ppm H_2O
- N₂ purge flow controlled by MKS mass flow controller

SVT N2 Purge Gas System Diagram

Critical Path for SVT N₂ Purge Operation

- Install mass flow controller in Hall B
- Run
 - Cable from controls chassis to mass flow controller
 - Network cable to mass flow controller
 - Gas line from mass flow controller to SVT cart

Conclusion

- All DSG staff have contributed to the project.
 - Procurement, hardware, software, testing, debugging, installation, and servicing
- Remaining hardware for DC to be purchased FY2017
- Gas for all detectors to be procured FY2017
- Installation in progress for DC, LTCC, HTCC, and SVT
- Procurement in progress for RICH
- Procurement for MVT and FT to occur FY2017

